Locating-dominating sets in twin-free graphs

Florent Foucaud Université Blaise Pascal, Clermont-Ferrand, France

joint work with:

Michael A. Henning (University of Johannesburg, South Africa) Christian Löwenstein (Universität Ulm, Germany) Thomas Sasse (Universität Ulm, Germany)

June 2015

Location-domination

Definition - Locating-dominating set (Slater, 1980's)

 $D \subseteq V(G)$ locating-dominating set of G:

- for every $u \in V$, $N[v] \cap D \neq \emptyset$ (domination).
- $\forall u \neq v \text{ of } V(G) \setminus D, N(u) \cap D \neq N(v) \cap D \text{ (location)}.$

Motivation: fault-detection in networks.

 \rightarrow The set D of grey processors is a set of fault-detectors.

Location-domination

Definition - Locating-dominating set (Slater, 1980's)

 $D \subseteq V(G)$ locating-dominating set of G:

- for every $u \in V$, $N[v] \cap D \neq \emptyset$ (domination).
- $\forall u \neq v \text{ of } V(G) \setminus D, N(u) \cap D \neq N(v) \cap D \text{ (location).}$

Notation. location-domination number LD(G): smallest size of a locating-dominating set of G

Location-domination

Definition - Locating-dominating set (Slater, 1980's)

 $D \subseteq V(G)$ locating-dominating set of G:

- for every $u \in V$, $N[v] \cap D \neq \emptyset$ (domination).
- $\forall u \neq v$ of $V(G) \setminus D$, $N(u) \cap D \neq N(v) \cap D$ (location).

Notation. location-domination number LD(G): smallest size of a locating-dominating set of G

Domination number: $\gamma(P_n) = \left\lceil \frac{n}{3} \right\rceil$

Location-domination number: $LD(P_n) = \left\lceil \frac{2n}{5} \right\rceil$

Upper bounds

Theorem (Domination bound, Ore, 1960's)

G graph of order n, no isolated vertices. Then $\gamma(G) \leq \frac{n}{2}$.

Upper bounds

G graph of order n, no isolated vertices. Then $\gamma(G) \leq \frac{n}{2}$.

Tight examples:

Upper bounds

G graph of order n, no isolated vertices. Then $\gamma(G) \leq \frac{n}{2}$.

Tight examples:

Remark: tight examples contain many twin-vertices!!

G graph of order n, no isolated vertices. Then $\gamma(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's)

G graph of order n, no isolated vertices. Then $LD(G) \leq n-1$.

G graph of order n, no isolated vertices. Then $\gamma(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's)

G graph of order n, no isolated vertices. Then $LD(G) \leq n-1$.

Conjecture (Garijo, González & Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

G graph of order n, no isolated vertices. Then $\gamma(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's)

G graph of order n, no isolated vertices. Then $LD(G) \leq n-1$.

Conjecture (Garijo, González & Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

Remark:

- twins are easy to detect
- twins have a trivial behaviour w.r.t. location-domination

G graph of order n, no isolated vertices. Then $\gamma(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's)

G graph of order n, no isolated vertices. Then $LD(G) \leq n-1$.

Conjecture (Garijo, González & Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

If true, tight: 1 domination-extremal graphs

G graph of order n, no isolated vertices. Then $\gamma(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's)

G graph of order n, no isolated vertices. Then $LD(G) \leq n-1$.

Conjecture (Garijo, González & Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

If true, tight: 2 a similar construction

G graph of order n, no isolated vertices. Then $\gamma(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's)

G graph of order n, no isolated vertices. Then $LD(G) \leq n-1$.

Conjecture (Garijo, González & Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

If true, tight: 3. a family with domination number 2

G graph of order n, no isolated vertices. Then $\gamma(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound, Slater, 1980's)

G graph of order n, no isolated vertices. Then $LD(G) \leq n-1$.

Conjecture (Garijo, González & Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

If true, tight: 4. a *dense* family with domination number 2

Conjecture (Garijo, González & Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

Theorem (Garijo, González & Márquez, 2014)

Conjecture true if G has independence number $\ge n/2$. (in particular, if bipartite)

Proof: every vertex cover is a locating-dominating set

Conjecture (Garijo, González & Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

 $\alpha'(G)$: matching number of G

Theorem (Garijo, González & Márquez, 2014)

If G has no 4-cycles, then $LD(G) \leq \alpha'(G) \leq \frac{n}{2}$.

Pro of:

- Consider special maximum matching M
- Select one vertex in each edge of M

Conjecture (Garijo, González & Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

 $\alpha'(G)$: matching number of G

Theorem (Garijo, González & Márquez, 2014)

If G has no 4-cycles, then $LD(G) \leq \alpha'(G) \leq \frac{n}{2}$.

Pro of:

- Consider special maximum matching M
- Select one vertex in each edge of M

G graph of order n, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

Theorem (F., Henning, 2015+)

Conjecture true if G is cubic.

Proof: Involved argument using maximum matching and Tutte-Berge theorem.

G graph of order n, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

Theorem (F., Henning, 2015+)

Conjecture true if G is cubic.

Bound is tight:

Conjecture (Garijo, González & Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

Theorem (F., Henning, 2015+)

Conjecture true if G is cubic.

Question

Are there twin-free (cubic) graphs with $LD(G) > \alpha'(G)$?

(if not, conjecture is true)

G graph of order n, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

Theorem (F., Henning, Löwenstein, Sasse, 2014+)

Conjecture true if G is split graph or complement of bipartite graph.

Line graph of G: intersection graph of the edges of G.

Theorem (F., Henning, 2015+)

Conjecture true if G is line graph.

Proof: By induction on the order, using edge-locating-dominating sets

G graph of order n, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

Theorem (F., Henning, Löwenstein, Sasse, 2014+)

G graph of order n, no isolated vertices, no twins. Then $LD(G) \leq \frac{2}{3}n$.

G graph of order n, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

Theorem (F., Henning, Löwenstein, Sasse, 2014+)

G graph of order n, no isolated vertices, no twins. Then $LD(G) \leq \frac{2}{3}n$.

Proof: • There exists a dominating set *D* such that each vertex has a private neighbour. We have $|D| \le n_1 + n_2$.

G graph of order n, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

Theorem (F., Henning, Löwenstein, Sasse, 2014+)

G graph of order n, no isolated vertices, no twins. Then $LD(G) \leq \frac{2}{3}n$.

Proof: • There exists a dominating set *D* such that each vertex has a private neighbour. We have $|D| \le n_1 + n_2$.

• there is a LD-set of size $|D| + n_1$;

G graph of order n, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

Theorem (F., Henning, Löwenstein, Sasse, 2014+)

G graph of order n, no isolated vertices, no twins. Then $LD(G) \leq \frac{2}{3}n$.

Proof: • There exists a dominating set *D* such that each vertex has a private neighbour. We have $|D| \le n_1 + n_2$.

• there is a LD-set of size $|D| + n_1$; there is a LD-set of size $n - n_1 - n_2$

G graph of order n, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

Theorem (F., Henning, Löwenstein, Sasse, 2014+)

G graph of order n, no isolated vertices, no twins. Then $LD(G) \leq \frac{2}{3}n$.

Proof: • There exists a dominating set *D* such that each vertex has a private neighbour. We have $|D| \le n_1 + n_2$.

- there is a LD-set of size $|D| + n_1$; there is a LD-set of size $n n_1 n_2$
- $\min\{|D|+n_1, n-n_1-n_2\} \le \frac{2}{3}n$

total dominating set: each vertex has a neighbour in the dominating set.

Theorem (Total domination bound, Cockayne, Dawes, Hedetniemi, 1980)

G graph of order n, no isolated vertices/edges. Then $\gamma_t(G) \leq \frac{2}{3}n$.

total dominating set: each vertex has a neighbour in the dominating set.

Theorem (Total domination bound, Cockayne, Dawes, Hedetniemi, 1980)

G graph of order n, no isolated vertices/edges. Then $\gamma_t(G) \leq \frac{2}{3}n$.

LTD(G): size of smallest locating-total dominating set

Conjecture (F., Henning, 2014)

G graph of order n, no isolated vertices/edges, twins. Then $LTD(G) \leq \frac{2}{3}n$.

total dominating set: each vertex has a neighbour in the dominating set.

Theorem (Total domination bound, Cockayne, Dawes, Hedetniemi, 1980)

G graph of order n, no isolated vertices/edges. Then $\gamma_t(G) \leq \frac{2}{3}n$.

LTD(G): size of smallest locating-total dominating set

Conjecture (F., Henning, 2014)

G graph of order n, no isolated vertices/edges, twins. Then $LTD(G) \leq \frac{2}{3}n$.

Theorem (F., Henning, 2015+)

G graph of order n, no isolated vertices/edges, twins. Then $LTD(G) \leq \frac{3}{4}n$.

total dominating set: each vertex has a neighbour in the dominating set.

Theorem (Total domination bound, Cockayne, Dawes, Hedetniemi, 1980)

G graph of order n, no isolated vertices/edges. Then $\gamma_t(G) \leq \frac{2}{3}n$.

LTD(G): size of smallest locating-total dominating set

Conjecture (F., Henning, 2014)

G graph of order n, no isolated vertices/edges, twins. Then $LTD(G) \leq \frac{2}{3}n$.

Theorem (F., Henning, 2015+)

G graph of order n, no isolated vertices/edges, twins. Then $LTD(G) \leq \frac{3}{4}n$.

Theorem (F., Henning, 2015+)

Conjecture true for graphs with no 4-cycles and for line graphs.

G graph of order n, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

- Which bipartite graphs satisfy $LD(G) = \frac{n}{2}$? (known for trees)
- Are there twin-free graphs with LD(G) > α'(G)?

Conjecture (F., Henning, 2014)

G graph of order n, no isolated vertices/edges, twins. Then $LTD(G) \leq \frac{2}{3}n$.

G graph of order n, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

- Which bipartite graphs satisfy $LD(G) = \frac{n}{2}$? (known for trees)
- Are there twin-free graphs with LD(G) > α'(G)?

Conjecture (F., Henning, 2014)

G graph of order n, no isolated vertices/edges, twins. Then $LTD(G) \leq \frac{2}{3}n$.

THANKS FOR YOUR ATTENTION